Differential forms, Calculus of Lie-Cartan

S. Allais, M. Joseph

Exercise 1 (Divergence and curl of a vector field). 1. Let $(E,\langle\cdot, \cdot\rangle)$ be an oriented Euclidean space of dimension 3. Let $\nu \in \Omega^{3}(E)$ be the volume form satisfying $\nu=\mathrm{d} x^{1} \wedge \mathrm{~d} x^{2} \wedge$ $\mathrm{d} x^{3}$ in any oriented orthonormal basis (why does it exist?). Let X be a vector field on E, then $\langle X, \cdot\rangle$ defines a 1 -form. We define $\operatorname{rot}(X)$ (also denoted $\operatorname{curl}(X))$ as the only vector field such that $\operatorname{rot}(X)\lrcorner \nu=\mathrm{d}(\langle X, \cdot\rangle) \in \Omega^{2}(E)$. Compute the expression of $\operatorname{rot}(X)$ in a direct orthonormal basis of E.
2. Let M be a smooth manifold equipped with a volume form ω. Let X be a vector field on M, we define $\operatorname{div}(X)$ as the only function such that $\mathrm{d}(X\lrcorner \omega)=\operatorname{div}(X) \omega$. Compute the expression of $\operatorname{div}(X)$ in local coordinates such that $\omega=\mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{n}$.
3. Prove that $\operatorname{div}(X) \equiv 0$ if and only if the flow of X is volume preserving.

Exercise $2\left(H^{0}(M)\right)$. Let M be a smooth manifold with N connected components, show that $H^{0}(M) \simeq \mathbb{R}^{N}$.

Exercise 3 (Calculus of Lie-Cartan). Let M be a smooth manifold of dimension n. A smooth family of k-form $[-1,1] \rightarrow \Omega^{k}(M), t \mapsto \omega_{t}$ is a map such that in local coordinates $\left(x_{1}, \ldots, x_{n}\right)$,

$$
\left(\omega_{t}\right)_{p}=\sum_{I} \omega_{t, I}(p) \mathrm{d} x^{I},
$$

where $(t, p) \rightarrow \omega_{t, I}(p)$ are smooth maps $[-1,1] \times U \rightarrow \mathbb{R}$. We denote by $\dot{\omega}_{t}, t \in[-1,1]$, the k-form obtained by taking $\dot{\omega}_{t, I}=\partial_{t} \omega_{t, I}$ in local coordinates, equivalently $\left(\dot{\omega}_{t}\right)_{p}=\partial_{t}\left(\omega_{t}\right)_{p}$ for all $p \in M$ (the derivative is defined in the usual way on the finite dimensional vector spaces $\left.\bigwedge^{k} T_{p}^{*} M\right)$.

1. Let $\left(\phi_{t}\right)$ be the flow of the vector field X, prove that

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} s} \phi_{s}^{*} \omega_{s}\right|_{s=t}=\phi_{t}^{*}\left(\mathcal{L}_{X} \omega_{t}+\dot{\omega}_{t}\right)
$$

wherever ϕ_{t} and ω_{t} are well-defined.
2. Let $\left(\varphi_{t}\right)$ be an isotopy, that is a family of diffeomorphisms of M such that $(t, p) \mapsto \varphi_{t}(p)$ is a smooth map. Let $\left(X_{t}\right)$ be the time depend vector field associated to the isotopy, defined by

$$
\left.\frac{\mathrm{d} \varphi_{s}}{\mathrm{~d} s}\right|_{s=t}=X_{t} \circ \varphi_{t}
$$

Prove that

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} s} \varphi_{s}^{*} \omega_{s}\right|_{s=t}=\varphi_{t}^{*}\left(\mathcal{L}_{X_{t}} \omega_{t}+\dot{\omega}_{t}\right),
$$

wherever φ_{t} and ω_{t} are well-defined.
Exercise 4 (Hamiltonian dynamics). Let $\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$ be the canonical coordinates on $\mathbb{R}^{2 n}$. Let $H: \mathbb{R} \times \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth function $(t, x) \mapsto H_{t}(x)$. The Hamilton equations of H refer the first order differential system

$$
\left\{\begin{array}{l}
q_{i}^{\prime}(t)=\frac{\partial H_{t}}{\partial p_{i}}(q(t), p(t)), \tag{1}\\
p_{i}^{\prime}(t)=-\frac{\partial H_{t}}{\partial q_{i}}(q(t), p(t)), \quad 1 \leqslant i \leqslant n .
\end{array}\right.
$$

We assume that the associated flow $\left(\phi_{t}\right)$ satisfying $\phi_{t}(q(0), p(0))=(q(t), p(t))$ for any solution (q, p) of (1) is well defined for $t \in \mathbb{R}$. Let $X_{t} \in \mathcal{X}\left(\mathbb{R}^{2 n}\right)$ be the 1-parameter family of vector fields associated to the isotopy $\left(\phi_{t}\right)$.

1. Let $\omega:=\sum_{i} \mathrm{~d} p_{i} \wedge \mathrm{~d} q_{i}$, show that (ϕ_{t}) being the flow of (1) is equivalent to

$$
\left.X_{t}\right\lrcorner \omega=-\mathrm{d} H_{t}, \quad \forall t \in \mathbb{R}
$$

2. Show that $\phi_{t}^{*} \omega=\omega$ for all $t \in \mathbb{R}$ and deduce that ϕ_{t} is volume preserving for all $t \in \mathbb{R}$ (Liouville theorem).
3. Let $\lambda:=\sum_{i} p_{i} \mathrm{~d} q_{i}$ be the Liouville form, find an explicit smooth map $a: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ such that

$$
\phi_{1}^{*} \lambda-\lambda=\mathrm{d} a .
$$

Exercise $5\left(H^{*}\left(\mathbb{T}^{n}\right)\right)$. For $k \in \mathbb{N}$, let $\Omega_{\mathbb{Z}^{n}}^{k}\left(\mathbb{R}^{n}\right)$ be the subspace of \mathbb{Z}^{n}-periodic k-form of \mathbb{R}^{n}, that is the set of $\alpha \in \Omega^{k}\left(\mathbb{R}^{n}\right)$ such that

$$
\alpha_{p}=\sum_{I} \alpha_{I}(p) \mathrm{d} x^{I}, \quad \forall p \in \mathbb{R}^{n},
$$

where the $\alpha_{I}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are smooth and such that $\alpha_{I}(p+\ell)=\alpha_{I}(p)$ for all $p \in \mathbb{R}^{n}$ and $\ell \in \mathbb{Z}^{n}$.

1. Let $\pi: \mathbb{R}^{n} \rightarrow \mathbb{T}^{n}$ be the quotient map. Show that $\left(\Omega_{\mathbb{Z}^{n}}^{*}\left(\mathbb{R}^{n}\right), d\right)$ is a differential graded algebra (where d denotes the restriction of the exterior derivative to the subspace of \mathbb{Z}^{n}-periodic forms) and that π^{*} defines an isomorphism of differential graded algebras $\Omega^{*}\left(\mathbb{T}^{n}\right) \rightarrow \Omega_{\mathbb{Z}^{n}}^{*}\left(\mathbb{R}^{n}\right)$.
2. Given $t \in \mathbb{R}^{n}$, we denote by $\tau_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ the translation $\tau_{t}(p):=p+t$. We will admit that given a closed $\alpha \in \Omega^{k}\left(\mathbb{R}^{n}\right)$, there exists a smooth family $t \mapsto \beta_{t}$ of $(k-1)$-form (meaning the $(t, p) \mapsto\left(\beta_{t}\right)_{I}(p)$ are smooth) such that $\tau_{t}^{*} \alpha-\alpha=\mathrm{d} \beta_{t}$. Given $\alpha \in \Omega_{\mathbb{Z}^{n}}^{k}\left(\mathbb{R}^{n}\right)$, we define a form with constant coefficients $\bar{\alpha} \in \Omega_{\mathbb{Z}^{n}}^{k}\left(\mathbb{R}^{n}\right)$ by

$$
\bar{\alpha}:=\sum_{I}\left(\int_{t \in[0,1]^{n}} \alpha_{I}(t) \mathrm{d} t\right) \mathrm{d} x^{I} .
$$

Show that α and $\bar{\alpha}$ are cohomologous in $\Omega_{\mathbb{Z}^{n}}^{*}\left(\mathbb{R}^{n}\right)$.
3. Show that the de Rham cohomology of \mathbb{T}^{n} is isomorphic to $\Lambda^{*} \mathbb{R}^{n}$.

